Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L377-L392, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290992

RESUMEN

Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.


Asunto(s)
Asma , Células Caliciformes , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Pirrolidinas , Esfingosina/análogos & derivados , Sulfonas , Animales , Humanos , Ratones , Células Caliciformes/metabolismo , Ratones Endogámicos C57BL , Asma/patología , Epitelio/metabolismo , Factores de Transcripción/metabolismo , Metaplasia/metabolismo , Metaplasia/patología , Alérgenos , Metanol
2.
ACS Appl Bio Mater ; 6(5): 1742-1754, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37099324

RESUMEN

The central nervous system has limited regeneration potential. The multipotency of adipose-derived mesenchymal stem cells (ADMSC) makes them an ideal autologous cell source for the regeneration of neural tissues. However, the likelihood of their differentiation into unwanted cell lineages when transplanted into a hostile injury environment is a serious disadvantage. Transplanting predifferentiated cells via an injectable carrier may aid in site-specific delivery for better survival of cells. Here, we focus on identifying an appropriate injectable hydrogel system that favors stem/progenitor cell attachment and differentiation for neural tissue engineering. An injectable composition of the hydrogel, derived from alginate dialdehyde (ADA) and gelatin, was formulated for this purpose. This hydrogel promoted proliferation/differentiation of ADMSCs to neural progenitors, visualized from the generation of prominent neurospheres and stage-specific expression of a neural progenitor marker (nestin, day 4), an intermittent neuronal marker (ß-III tub, day 5), and a mature neuronal marker (MAP-2, day 8) with neural branching and networking (>85%). The differentiated cells also expressed the functional marker synaptophysin. There was no negative impact on stem/progenitor cell survival (>95%) or differentiation (∼90%) as compared to two-dimensional (2D) culture. Addition of appropriate quantities of asiatic acid specific for neural niche supported cell growth and differentiation without affecting cell survival (>90%) and improved neural branching and elongation. Optimized interconnected porous hydrogel niche exhibited rapid gelation (3 min) and self-healing properties mimicking native neural tissue. Both ADA-gelatin hydrogel by itself and that incorporated with asiatic acid were found to support stem/neural progenitor cell growth and differentiation and have potential applications as antioxidants and growth promoters upon release at the cell transplantation site. In short, the matrix itself or incorporated with phytomoieties could serve as a potential minimally invasive injectable cell delivery vehicle for cell-based therapies of neural diseases.


Asunto(s)
Células Madre Mesenquimatosas , Células-Madre Neurales , Ratas , Animales , Hidrogeles/metabolismo , Ingeniería de Tejidos/métodos , Gelatina/farmacología , Gelatina/metabolismo , Alginatos , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo
3.
J Spinal Cord Med ; 46(2): 262-276, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34062112

RESUMEN

BACKGROUND: The multipotency of adipose-derived mesenchymal stem cells (ADMSC) could be an advantage to regenerate tissues with multiple cell types. However, due to the hostile nature, trauma sites like spinal cord injury can augment the ADMSC differentiation into undesirable lineages. Immersing pre-differentiated neural progenitors in a biomimetic niche during delivery could guard them against any undesired differentiation or death. OBJECTIVE: The study proposes using an insoluble cell-specific fibrin niche for in vitro differentiation of rat ADMSCs to neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). Further, the study explores fibrin hydrogel for in vivo progenitor cell delivery, and that can aid post-transplant survival/differentiation. DESIGN: The in vitro experiments analyzed for differentiation-specific markers to establish derivation of rADMSCs to rNPCs and rOPCs. The derived progenitors, tagged with fluorescent tracker dye were delivered in rat T10 contusion SCI using fibrin hydrogel. After 28 days, imaged the experiment site to determine cell survival, immunostained the tissues to identify differentiation of transplanted cells, and evaluated the effect of fibrin and cells on regulating the injury-associated immune response. RESULTS: The study demonstrated fibrin niche aided stable differentiation of rat ADMSCs into neural progenitors. Fibrin matrix holds up the delivered progenitor cells in the SCI site. The H&E stained tissues revealed regulated cavitation, astrogliosis, and inflammation in test tissues. Progression of transplanted cells into oligodendrocytes upon delivering a mixture of rNPCs, rOPCs, and fibrin is evident. CONCLUSION: Fibrin niche-based derivation of neural progenitors from ADMSC seems valuable for transplantation using fibrin hydrogel. It is a promising strategy for extensive study towards further development of translational stem cell-based neural replacement therapy.


Asunto(s)
Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Ratas , Animales , Ingeniería de Tejidos/métodos , Fibrina/metabolismo , Fibrina/farmacología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Diferenciación Celular/fisiología , Hidrogeles/metabolismo , Hidrogeles/farmacología
4.
Front Pharmacol ; 13: 880878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662702

RESUMEN

Management of acute respiratory distress involves O2 supplementation, which is lifesaving, but causes severe hyperoxic acute lung injury (HALI). NADPH oxidase (NOX) could be a major source of reactive oxygen species (ROS) in hyperoxia (HO). Epithelial cell death is a crucial step in the development of many lung diseases. Alveolar type II (AT2) cells are the metabolically active epithelial cells of alveoli that serve as a source of AT1 cells following lung injury. The aim of this study was to determine the possible role of AT2 epithelial cell NOX4 in epithelial cell death from HALI. Wild type (WT), Nox4 fl/fl (control), and Nox4 -/- Spc-Cre mice were exposed to room air (NO) or 95% O2 (HO) to investigate the structural and functional changes in the lung. C57BL/6J WT animals subjected to HO showed increased expression of lung NOX4 compared to NO. Significant HALI, increased bronchoalveolar lavage cell counts, increased protein levels, elevated proinflammatory cytokines and increased AT2 cell death seen in hyperoxic Nox4 fl/fl control mice were attenuated in HO-exposed Nox4 -/- Spc-Cre mice. HO-induced expression of NOX4 in MLE cells resulted in increased mitochondrial (mt) superoxide production and cell apoptosis, which was reduced in NOX4 siRNA silenced cells. This study demonstrates a novel role for epithelial cell NOX4 in accelerating lung epithelial cell apoptosis from HALI. Deletion of the Nox4 gene in AT2 cells or silencing NOX4 in lung epithelial cells protected the lungs from severe HALI with reduced apoptosis and decreased mt ROS production in HO. These results suggest NOX4 as a potential target for the treatment of HALI.

5.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163176

RESUMEN

Premature infants are born with developing lungs burdened by surfactant deficiency and a dearth of antioxidant defense systems. Survival rate of such infants has significantly improved due to advances in care involving mechanical ventilation and oxygen supplementation. However, a significant subset of such survivors develops the chronic lung disease, Bronchopulmonary dysplasia (BPD), characterized by enlarged, simplified alveoli and deformed airways. Among a host of factors contributing to the pathogenesis is oxidative damage induced by exposure of the developing lungs to hyperoxia. Recent data indicate that hyperoxia induces aberrant sphingolipid signaling, leading to mitochondrial dysfunction and abnormal reactive oxygen species (ROS) formation (ROS). The role of sphingolipids such as ceramides and sphingosine 1-phosphate (S1P), in the development of BPD emerged in the last decade. Both ceramide and S1P are elevated in tracheal aspirates of premature infants of <32 weeks gestational age developing BPD. This was faithfully reflected in the murine models of hyperoxia and BPD, where there is an increased expression of sphingolipid metabolites both in lung tissue and bronchoalveolar lavage. Treatment of neonatal pups with a sphingosine kinase1 specific inhibitor, PF543, resulted in protection against BPD as neonates, accompanied by improved lung function and reduced airway remodeling as adults. This was accompanied by reduced mitochondrial ROS formation. S1P receptor1 induced by hyperoxia also aggravates BPD, revealing another potential druggable target in this pathway for BPD. In this review we aim to provide a detailed description on the role played by sphingolipid signaling in hyperoxia induced lung injury and BPD.


Asunto(s)
Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Lesión Pulmonar/metabolismo , Esfingolípidos/fisiología , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Animales Recién Nacidos , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Humanos , Hiperoxia/metabolismo , Hiperoxia/fisiopatología , Lactante , Recién Nacido , Pulmón/patología , Lesión Pulmonar/patología , Lisofosfolípidos/metabolismo , Metanol/farmacología , Ratones , Estrés Oxidativo/fisiología , Alveolos Pulmonares/metabolismo , Pirrolidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Sulfonas/farmacología
6.
Thorax ; 77(1): 47-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33883249

RESUMEN

INTRODUCTION: Neonatal lung injury as a consequence of hyperoxia (HO) therapy and ventilator care contribute to the development of bronchopulmonary dysplasia (BPD). Increased expression and activity of lysyl oxidase (LOX), a key enzyme that cross-links collagen, was associated with increased sphingosine kinase 1 (SPHK1) in human BPD. We, therefore, examined closely the link between LOX and SPHK1 in BPD. METHOD: The enzyme expression of SPHK1 and LOX were assessed in lung tissues of human BPD using immunohistochemistry and quantified (Halo). In vivo studies were based on Sphk1-/- and matched wild type (WT) neonatal mice exposed to HO while treated with PF543, an inhibitor of SPHK1. In vitro mechanistic studies used human lung microvascular endothelial cells (HLMVECs). RESULTS: Both SPHK1 and LOX expressions were increased in lungs of patients with BPD. Tracheal aspirates from patients with BPD had increased LOX, correlating with sphingosine-1-phosphate (S1P) levels. HO-induced increase of LOX in lungs were attenuated in both Sphk1-/- and PF543-treated WT mice, accompanied by reduced collagen staining (sirius red). PF543 reduced LOX activity in both bronchoalveolar lavage fluid and supernatant of HLMVECs following HO. In silico analysis revealed STAT3 as a potential transcriptional regulator of LOX. In HLMVECs, following HO, ChIP assay confirmed increased STAT3 binding to LOX promoter. SPHK1 inhibition reduced phosphorylation of STAT3. Antibody to S1P and siRNA against SPNS2, S1P receptor 1 (S1P1) and STAT3 reduced LOX expression. CONCLUSION: HO-induced SPHK1/S1P signalling axis plays a critical role in transcriptional regulation of LOX expression via SPNS2, S1P1 and STAT3 in lung endothelium.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Animales , Células Endoteliales , Humanos , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteína-Lisina 6-Oxidasa , Factor de Transcripción STAT3
7.
Biomed Mater ; 17(1)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34736245

RESUMEN

Transplantation of neural progenitor cell (NPC) possessing the potential to differentiate into neurons may guard against spinal cord injury (SCI)- associated neuronal trauma. We propose that autologous-like NPC may reduce post-transplant immune response. The study used the rat SCI model to prove this concept. For isolation and expansion of rat NPC for cell-based SCI therapy, thein vitroprotocol standardized with human NPC seemed suitable. The primary aim of this study is to select a cell/neural tissue-compatible biomaterial for improving NPC survivalin vivo. The composition of the fibrin hydrogel is adjusted to obtain degradable, porous, and robust fibrin strands for supporting neural cell attachment, migration, and tissue regeneration. This study employed NPC culture to evaluate the cytocompatibility and suitability of the hydrogel, composed by adding graded concentrations of thrombin to a fixed fibrinogen concentration. The microstructure evaluation by scanning electron microscope guided the selection of a suitable composition for delivering the embedded cells. On adding more thrombin, fibrinogen clotted quickly but reduced porosity, pore size, and fiber strand thickness. The high activity of thrombin also affected NPC morphology and thein vitrocell survival. The selected hydrogel carried viable NPC and retained them at the injury site post-transplantation. The fibrin hydrogel played a protective role throughout the transfer process by providing cell attachment sites and survival signals. The fibrin and NPC together regulated the immune response at the SCI site reducing ED1+ve/ED2+vemacrophages in the early period of 8-16 d after injury. Migration ofß-III tubulin+veneural-like cells into the fibrin-injected control SCI is evident. The continuous use of a non-neurotoxic fibrin matrix could be a convenient strategy forin vitroNPC preparation, minimally invasive cell delivery, and better transplantation outcome.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Animales , Diferenciación Celular , Fibrina , Hidrogeles , Ratas , Médula Espinal , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre/métodos
8.
J Vis Exp ; (174)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34424244

RESUMEN

Treatment of neonatal rodent with drugs instilled directly into the trachea could serve as a valuable tool to study the impact of a locally administered drug. This has direct translational impact because surfactant and drugs are administered locally into the lungs. Though the literature has many publications describing minimally invasive transoral intubation of adult mice and rats in therapeutic experiments, this approach in neonatal rat pups is lacking. The small size of orotracheal region/pharynx in the pups makes visualization of laryngeal lumen (vocal cords) difficult, contributing to the variable success rate of intratracheal drug delivery. We hereby demonstrate effective oral intubation of neonatal rat pup - a technique that is non-traumatic and minimally-invasive, so that it can be used for serial administration of drugs. We used an operating otoscope with an illumination system and a magnifying lens to visualize the tracheal opening of the rat neonates. The drug is then instilled using a 1 mL syringe connected to a pipette tip. The accuracy of the delivery method was demonstrated using Evans blue dye administration. This method is easy to get trained in and could serve as an effective way to instill drugs into trachea. This method could also be used for administration of inoculum or agents to simulate disease conditions in animals and, also, for cell-based treatment strategies for various lung diseases.


Asunto(s)
Enfermedades Pulmonares , Preparaciones Farmacéuticas , Animales , Intubación Intratraqueal , Pulmón , Ratones , Ratas , Roedores , Tráquea
9.
Cell Biochem Biophys ; 79(3): 561-573, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34176100

RESUMEN

INTRODUCTION: We have earlier shown that hyperoxia (HO)-induced sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling contribute to bronchopulmonary dysplasia (BPD). S1P acts through G protein-coupled receptors, S1P1 through S1P5. Further, we noted that heterozygous deletion of S1pr1 ameliorated the HO-induced BPD in the murine model. The mechanism by which S1P1 signaling contributes to HO-induced BPD was explored. METHODS: S1pr1+/+ and S1pr1+/- mice pups were exposed to either room air (RA) or HO (75% oxygen) for 7 days from PN 1-7. Lung injury and alveolar simplification was evaluated. Lung protein expression was determined by Western blotting and immunohistochemistry (IHC). In vitro experiments were performed using human lung microvascular endothelial cells (HLMVECs) with S1P1 inhibitor, NIBR0213 to interrogate the S1P1 signaling pathway. RESULTS: HO increased the expression of S1pr1 gene as well as S1P1 protein in both neonatal lungs and HLMVECs. The S1pr1+/- neonatal mice showed significant protection against HO-induced BPD which was accompanied by reduced inflammation markers in the bronchoalveolar lavage fluid. HO-induced reduction in ANG-1, TIE-2, and VEGF was rescued in S1pr1+/- mouse, accompanied by an improvement in the number of arterioles in the lung. HLMVECs exposed to HO increased the expression of KLF-2 accompanied by reduced expression of TIE-2, which was reversed with S1P1 inhibition. CONCLUSION: HO induces S1P1 followed by reduced expression of angiogenic factors. Reduction of S1P1 signaling restores ANG-1/ TIE-2 signaling leading to improved angiogenesis and alveolarization thus protecting against HO-induced neonatal lung injury.


Asunto(s)
Lisofosfolípidos , Esfingosina/análogos & derivados
10.
Antioxidants (Basel) ; 10(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802941

RESUMEN

Pseudomonas aeruginosa (PA) infection increases reactive oxygen species (ROS), and earlier, we have shown a role for NADPH oxidase-derived ROS in PA-mediated lung inflammation and injury. Here, we show a role for the lung epithelial cell (LEpC) NOX4 in PA-mediated chromatin remodeling and lung inflammation. Intratracheal administration of PA to Nox4flox/flox mice for 24 h caused lung inflammatory injury; however, epithelial cell-deleted Nox4 mice exhibited reduced lung inflammatory injury, oxidative stress, secretion of pro-inflammatory cytokines, and decreased histone acetylation. In LEpCs, NOX4 was localized both in the cytoplasmic and nuclear fractions, and PA stimulation increased the nuclear NOX4 expression and ROS production. Downregulation or inhibition of NOX4 and PKC δ attenuated the PA-induced nuclear ROS. PA-induced histone acetylation was attenuated by Nox4-specific siRNA, unlike Nox2. PA stimulation increased HDAC1/2 oxidation and reduced HDAC1/2 activity. The PA-induced oxidation of HDAC2 was attenuated by N-acetyl-L-cysteine and siRNA specific for Pkc δ, Sphk2, and Nox4. PA stimulated RAC1 activation in the nucleus and enhanced the association between HDAC2 and RAC1, p-PKC δ, and NOX4 in LEpCs. Our results revealed a critical role for the alveolar epithelial NOX4 in mediating PA-induced lung inflammatory injury via nuclear ROS generation, HDAC1/2 oxidation, and chromatin remodeling.

11.
J Biol Chem ; 295(38): 13393-13406, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32732285

RESUMEN

Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Proliferación Celular , Neoplasias Pulmonares/enzimología , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Cardiolipinas/genética , Cardiolipinas/metabolismo , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Mitocondrias/genética , Proteínas de Neoplasias/genética , Trasplante de Neoplasias
12.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L497-L512, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697651

RESUMEN

Hyperoxia (HO)-induced lung injury contributes to bronchopulmonary dysplasia (BPD) in preterm newborns. Intractable wheezing seen in BPD survivors is associated with airway remodeling (AWRM). Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling promotes HO-mediated neonatal BPD; however, its role in the sequela of AWRM is not known. We noted an increased concentration of S1P in tracheal aspirates of neonatal infants with severe BPD, and earlier, demonstrated that Sphk1-/- mice showed protection against HO-induced BPD. The role of SPHK1/S1P in promoting AWRM following exposure of neonates to HO was investigated in a murine model. Therapy using PF543, the specific SPHK1 inhibitor, during neonatal HO reduced alveolar simplification followed by reduced AWRM in adult mice. This was associated with reduced airway hyperreactivity to intravenous methacholine. Neonatal HO exposure was associated with increased expression of SPHK1 in lung tissue of adult mice, which was reduced with PF543 therapy in the neonatal stage. This was accompanied by amelioration of HO-induced reduction of E-cadherin in airway epithelium. This may be suggestive of arrested partial epithelial mesenchymal transition (EMT) induced by HO. In vitro studies using human primary airway epithelial cells (HAEpCs) showed that SPHK1 inhibition or deletion restored HO-induced reduction in E-cadherin and reduced formation of mitochondrial reactive oxygen species (mtROS). Blocking mtROS with MitoTempo attenuated HO-induced partial EMT of HAEpCs. These results collectively support a therapeutic role for PF543 in preventing HO-induced BPD in neonates and the long-term sequela of AWRM, thus conferring a long-term protection resulting in improved lung development and function.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Displasia Broncopulmonar/tratamiento farmacológico , Hiperoxia/tratamiento farmacológico , Metanol/análogos & derivados , Pirrolidinas/farmacología , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/inducido químicamente , Modelos Animales de Enfermedad , Hiperoxia/inducido químicamente , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Metanol/farmacología , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonas
13.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192225

RESUMEN

The sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling axis is emerging as a key player in the development of idiopathic pulmonary fibrosis (IPF) and bleomycin (BLM)-induced lung fibrosis in mice. Recent evidence implicates the involvement of the Hippo/Yes-associated protein (YAP) 1 pathway in lung diseases, including IPF, but its plausible link to the SPHK1/S1P signaling pathway is unclear. Herein, we demonstrate the increased co-localization of YAP1 with the fibroblast marker FSP1 in the lung fibroblasts of BLM-challenged mice, and the genetic deletion of Sphk1 in mouse lung fibroblasts (MLFs) reduced YAP1 localization in fibrotic foci. The PF543 inhibition of SPHK1 activity in mice attenuated YAP1 co-localization with FSP1 in lung fibroblasts. In vitro, TGF-ß stimulated YAP1 translocation to the nucleus in primary MLFs, and the deletion of Sphk1 or inhibition with PF543 attenuated TGF-ß-mediated YAP1 nuclear localization. Moreover, the PF543 inhibition of SPHK1, or the verteporfin inhibition of YAP1, decreased the TGF-ß- or BLM-induced mitochondrial reactive oxygen species (mtROS) in human lung fibroblasts (HLFs) and the expression of fibronectin (FN) and alpha-smooth muscle actin (α-SMA). Furthermore, scavenging mtROS with MitoTEMPO attenuated the TGF-ß-induced expression of FN and α-SMA. The addition of the S1P antibody to HLFs reduced TGF-ß- or S1P-mediated YAP1 activation, mtROS, and the expression of FN and α-SMA. These results suggest a role for SPHK1/S1P signaling in TGF-ß-induced YAP1 activation and mtROS generation, resulting in fibroblast activation, a critical driver of pulmonary fibrosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Lisofosfolípidos/metabolismo , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales , Células Epiteliales Alveolares/metabolismo , Animales , Bleomicina/efectos adversos , Fibroblastos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Eliminación de Gen , Expresión Génica , Vía de Señalización Hippo , Humanos , Fibrosis Pulmonar Idiopática/etiología , Inmunohistoquímica , Metanol/análogos & derivados , Metanol/farmacología , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Pirrolidinas/farmacología , Esfingosina/metabolismo , Sulfonas , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Señalizadoras YAP
14.
Artículo en Inglés | MEDLINE | ID: mdl-32169655

RESUMEN

Bronchopulmonary dysplasia (BPD) is a devastating chronic neonatal lung disease leading to serious adverse consequences. Nearly 15 million babies are born preterm accounting for >1 in 10 births globally. The aetiology of BPD is multifactorial and the survivors suffer lifelong respiratory morbidity. Lysophospholipids (LPL), which include sphingosine-1-phosphate (S1P), and lysophosphatidic acid (LPA) are both naturally occurring bioactive lipids involved in a variety of physiological and pathological processes such as cell survival, death, proliferation, migration, immune responses and vascular development. Altered LPL levels have been observed in a number of lung diseases including BPD, which underscores the importance of these signalling lipids under normal and pathophysiological situations. Due to the paucity of information related to LPLs in BPD, most of the ideas related to BPD and LPL are speculative. This article is intended to promote discussion and generate hypotheses, in addition to the limited review of information related to BPD already established in the literature.


Asunto(s)
Displasia Broncopulmonar/metabolismo , Lisofosfolípidos/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Displasia Broncopulmonar/etiología , Humanos , Receptores de Lisoesfingolípidos/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-32171908

RESUMEN

Long-chain fatty aldehydes are present in low concentrations in mammalian cells and serve as intermediates in the interconversion between fatty acids and fatty alcohols. The long-chain fatty aldehydes are generated by enzymatic hydrolysis of 1-alkyl-, and 1-alkenyl-glycerophospholipids by alkylglycerol monooxygenase, plasmalogenase or lysoplasmalogenase while hydrolysis of sphingosine-1-phosphate (S1P) by S1P lyase generates trans ∆2-hexadecenal (∆2-HDE). Additionally, 2-chloro-, and 2-bromo- fatty aldehydes are produced from plasmalogens or lysoplasmalogens by hypochlorous, and hypobromous acid generated by activated neutrophils and eosinophils, respectively while 2-iodofatty aldehydes are produced by excess iodine in thyroid glands. The 2-halofatty aldehydes and ∆2-HDE activated JNK signaling, BAX, cytoskeletal reorganization and apoptosis in mammalian cells. Further, 2-chloro- and 2-bromo-fatty aldehydes formed GSH and protein adducts while ∆2-HDE formed adducts with GSH, deoxyguanosine in DNA and proteins such as HDAC1 in vitro. ∆2-HDE also modulated HDAC activity and stimulated H3 and H4 histone acetylation in vitro with lung epithelial cell nuclear preparations. The α-halo fatty aldehydes elicited endothelial dysfunction, cellular toxicity and tissue damage. Taken together, these investigations suggest a new role for long-chain fatty aldehydes as signaling lipids, ability to form adducts with GSH, proteins such as HDACs and regulate cellular functions.


Asunto(s)
Aldehído-Liasas/metabolismo , Aldehídos/metabolismo , Plasmalógenos/metabolismo , Transducción de Señal , Animales , Histona Desacetilasas/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...